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Verboncoeur et al. [9] improved upon Lawson’s method
and showed how the external circuits can be solved simulta-An algorithm for coupling external circuit elements to be bounded

two-dimensional electrostatic plasma simulation codes is devel- neously with the internal fields. The approach and equa-
oped. In general, the external circuit equations provide a mixture tions we use in this work for coupling to the external
of Dirichlet and Neumann boundary conditions for the Poisson equa- circuits have their roots in the work of Verboncoeur et al.tion, which is solved each time step for the internal plasma potential.

[9], and we extend their work to two-dimensional simula-We rewrite the coupling between the plasma and the external circuit
tions. Even in electromagnetic codes, one has to accountparameters as an algebraic or ordinary differential equation for the

potential on the boundary. This scheme allows decomposition of for the electrostatic fields resulting from the local charge
the field solve into a Laplace solver with boundary conditions (e.g., imbalances [7]. Hence, this scheme may also be used in
applied potentials) and a Poisson solver with zero boundary condi-

electromagnetic simulations.tions. We present the details of the external circuit coupling to an
The model we discuss here is a two-dimensional (x, y)explicit electrostatic planar two-dimensional particle-in-cell code

called PDP2, and discuss briefly how the coupling can be done bounded electrostatic particle simulation with external cir-
in an implicit electrostatic code. The decomposition replaces the cuit elements and an applied uniform or non-uniform mag-
iterative coupling with a direct coupling and reduces the amount netic field. Figure 1 shows the system being simulated. The
of computational time spent in the field solver. We use PDP2 to

left and right electrodes may be driven separately withsimulate a dually excited capacitively coupled RF discharge and
voltage or current sources. In case of external voltageshow how such a system can be used as a plasma processing tool

with separate control over ion flux and ion bombarding energy. sources, the external circuits may also include blocking
Q 1997 Academic Press capacitors to stop the flow of DC currents which would

otherwise flow in the external circuit due to the asymmetry.
We show the details of the coupling for simple external

I. INTRODUCTION circuits, and discuss how one may extend the work to more
general circuits. Thomas et al. [10] have presented a generalComputer modeling and simulation of bounded plasma
approach for including lumped circuit elements in a finitedevices are now widely used in the plasma processing com-
difference time domain (FDTD) solution of Maxwell’smunity [1–6] as well as in the microwave plasma tube
equations. Their methodology allows a direct access tocommunity [7]. In most of these models, the domain of the
SPICE for modeling the lumped circuits, while the fullcomputer experiment includes the entire plasma, dielectric
3-dimensional solution to Maxell’s equations provides theand/or conducting walls, dielectric and/or conducting
plasma response. We may also use the same approach forwalls, dielectric and/or conducting internal structures, with
including more general external circuits in our simulations.the boundary and internal electrodes coupled to external

We place a rectangular mesh over the system on whichcircuits. The addition of external circuits usually places a
the particle charge densities are accumulated in order tomixed set of Dirichlet/Neumann boundary conditions on
solve for the electrostatic field quantities at the meshthe internal fields. A comprehensive review of the consid-
points. The charge-gathering and particle-pushing algori-erations involved in a bounded one-dimensional electro-
thyms used in this model are standard particle-in-cell tech-static plasma simulation code was presented by Lawson [8]
niques which can be found in Birdsall and Langdon [11].who also included external circuit elements in his analysis.
Because the ions are typically much heavier than the elec-However, Lawson’s scheme was first-order accurate and
trons and hardly move on the electron time-scale, theyhe did not solve the internal field and the external circuit
may be advanced with a much larger time step. This schemeequations simultaneously. Verboncoeur et al. [9] showed
is the essence of subcycling in particle simulations [11–13],that in some cases Lawson’s external circuit solution was

no longer known at the same time as the internal fields. which improves the efficiency of multiple-species particle

149
0021-9991/97 $25.00

Copyright  1997 by Academic Press
All rights of reproduction in any form reserved.



150 VAHEDI AND DIPESO

plasma and the external circuit parameters as an algebraic
or ordinary differential equation for potential on the
boundary. This scheme allows us to decompose the field
solve into a Laplace solver with boundary conditions due
to the external circuit, and a Poisson solver with zero
boundary condition. These boundary conditions may be
given as Dirichlet (e.g., applied potentials), Neumann (e.g.,
applied surface charges), or a set of mixed Dirichlet/Neu-
mann (e.g., general external circuit). We present the details
of the external circuit coupling to an explicit electrostatic
rectangular two-dimensional particle-in-cell code. Note
that in explicit electrostatic codes, the Laplace equation is
solved only once at the beginning of the simulation in order
to determine a normalized internal vacuum field due to
the applied boundary conditions. An algebraic equation
or an ordinary differential equation is then solved each
time step in order to compute the magnitude of the fieldFIG. 1. The two-dimensional simulated system. Top and bottom
to scale the vacuum field. The vacuum field is then addedboundaries are grounded; the left and right electrodes may be the driven

by external circuits. The external circuits consists of either a voltage to the field obtained from the zero boundary condition
source and a blocking capacitor or a current source. Poisson solver in order to obtain the total field inside the

plasma. We will also focus on Dirichlet boundary condi-
tions and later discuss the addition of Neumann boundary
conditions. Note that the boundary conditions are specifiedsimulation by making the cost of advancing the ions negligi-
at the walls or internal structures which means that ourble compared with that of the electrons.
calculation includes the plasma sheath. The resolution ofIn order to model collisional plasmas and self-sustained
the plasma sheath has a significant influence on the accu-discharges, we have added a Monte Carlo collision (MCC)
racy of any field solver and this algorithm is no exception.package [14–16], including the null collision method [17,
In this paper, we assume that the plasma sheath is suffi-18], to the usual PIC charged particle scheme, as shown
ciently resolved.in Fig. 2. The full three-dimensional character of a collision

This algorithm is implemented in PDP2 [1, 19], an ex-is modeled with three velocity components. For our calcu-
plicit electrostatic rectangular two-dimensional particle-in-lations, the neutral particles are assumed to have a Maxwel-
cell code. As an example, we use PDP2 to simulate a duallylian velocity distribution and a uniform density within the
excited capacitively coupled RF discharge and show howboundaries. The model remains valid if the neutral density
such a system may be used as a plasma processing toolis a function of position and time.

In this algorithm, we rewrite the coupling between the with separate control over ion flux and ion bombarding

FIG. 2. The flow chart for an explicit PIC scheme with the addition of the Monte Carlo collision package, called PIC-MCC.
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energy. For this example we choose a low density plasma equations, and their solutions required much less computer
time than the biconjugate gradient method previously(p 109 cm23) in which we can resolve the RF plasma sheath

with a 64 3 64 mesh. The algorithm is still valid at higher used.
DADI works as follows. An artificial time dependenceplasma densities but requires a finer mesh.

is added to convert Eqs. (1) or (2) into a parabolic equation,
II. ELLIPTIC SOLVER

t9f 5 = ? [«(x, y)=f] 1 r.
In order to determine the electrostatic fields in the

Then non-iterative ADI is used to advance the ‘‘parabolic’’plasma, we solve the usual explicit form of the Poisson
equations in time t9. This parabolic equation is then finite-equation for an inhomogeneous system
differenced, and a pseudo time step Dt9 is dynamically
adjusted to speed up convergence to the ‘‘time’’ asymptotic= ? [«(x, y)=f] 5 2r, (1)
state which is the solution of the original elliptic equation.
Convergence occurs when the residual of the elliptic equa-with the given boundary conditions on all boundaries. In
tion is less than a chosen tolerance. More detailed explana-Eq. (1), f is the potential, r is the charge density, and
tions may be found in the papers by Doss and Miller [22]«(x, y) is the spatially dependent dielectric constant of the
and by Hewett, Larson, and Doss [23]. Finally, we addmedium. If the equations are solved implicitly (e.g., direct
that for parallel computers, the method of choice mayimplicit particle-in-cell schemes [20]), then we would solve
be Successive Over Relaxation (SOR) because althougha modified Poisson equation given by [11]
DADI takes fewer iterations to achieve a certain residual,
the local nature of SOR requires less communication than= ? [(1 1 x(x, y))«(x, y)=f] 5 2r̃ (2)
an ADI sweep.

DADI and other iterative techniques are usually usedwhere x is the implicit numerical correction to f, and r̃ is
to solve for steady state problems in which the time deriva-the charge density from particle motion based only on
tives approach zero. We have applied this iterative methodfields known at the present time step. Inside the plasma,
to a RF driven plasma in which the solution will approach«(x, y) 5 «0 , and «(x, y) enters the problem only for inter-
a cyclic steady state, but the time variation does not go tonal dielectrics.
zero. This means that on average the number of DADIMethods to solve elliptic equations via finite differences
iterations required to converge (to a given accuracy con-are compared and contrasted in Hockney and Eastwood
straint) stays the same every time step in the RF cycle.[21]. The methods fall into two general classes: iterative
We will show how superposition and decompositon cantechniques and direct matrix inversions. Among the fastest
reduce the number of iterations each time step in themethods is a direct matrix inversion called cyclic reduction.
RF cycle.Unlike Fourier transform methods, cyclic reduction may

easily be generalized to cylindrical and spherical coordi-
III. FINITE DIFFERENCE EQUATIONS ON Anate systems. Unfortunately, like Fourier transform meth-

UNIFORM MESHods, cyclic reduction requires that the potential equation
be separable. In general, Eqs. (1) and (2) are not separable

We choose to derive our finite differenced Poisson equa-and cyclic reduction cannot be used. Instead, we choose a
tion using a Gaussian pillbox on our rectangular meshmore general, but somewhat slower, method to solve Eq.
instead of finite differencing Eq. (1). The advantage of(1) which also preserves the capability of solving Eq. (2).
starting from Gauss’ law is that the same equation mayIn many models this computational inefficiency is ignorable
then be used to derive boundary conditions on internalbecause the particle moving and weighting takes almost
and bounding conductive surfaces and internal dielectricall of a time step.
structures. Assuming a uniform orthogonal mesh in theThe Dynamic Alternating Direction Implicit (DADI)
(x, y) coordinates, as shown in Fig. 3, Gauss’ law at (i, j)method is an iterative technique devised by Doss and
may be written asMiller [22] that converges rapidly for equations similar to

Eqs. (1) and (2) and is our method of choice. According R
S

«E ? dS 5 E
V

r dV 1 R
S

s dS 5 Q, (3)to Doss and Miller, DADI is a factor of 4 slower than a
fast direct matrix inversion method for solving Eq. (1) and
the directional splitting in the scheme makes DADI easily or
vectorized for large simulations done on vector computers

DyDz(«i11/2, j Exi11/2, j
2 «i21/2, j Exi21/2, j

) 1 DxDz
(4)

such as the CRAYs. Hewett, Larson, and Doss [23] applied
a variation of the method to solve a coupled set of elliptic

(«i, j11/2 Eyi, j11/2
2 «i, j21/2 Eyi, j21/2

) 5 Qij ,equations arising from a reduced version of Maxwell’s
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Substituting the above expressions into Eq. (4), we obtain
the finite differenced Poisson equation which can be solved
for the potential throughout the system. Note that the
above cell centered field expressions are only used to ob-
tain the finite differenced Poisson equation. We use differ-
ences over two cells in order to obtain the electric field
components for advancing particles [11].

A. Internal Dielectric Objects

Stair step internal dielectrics are included in our system
by assigning a dielectric constant to each cell center as
shown in Fig. 4. In this case for example, «i21/2, j in Eq.
(4) is defined by «i21/2, j 5 («i21/2, j11/2 1 «i21/2, j21/2)/2. The
inclusion of internal dielectric structures does not change
the size of the unknown f matrix, because the potential
inside and on the surface of dielectric structures is not
known. If a grid point (i, j) is inside a dielectric or on a
free-space dielectric boundary, Eq. (4) is written as an
equation for the potential and is incorporated into the
finite-differenced matrix. For the grid points inside a di-
electric, the source term Qij is zero, while for the gridFIG. 3. The Gaussian pillbox, centered at the (i, j) grid point in a
points on a free-space dielectric boundary Qij includes freesystem with a uniform mesh, used for the Poisson solver.
charges as well as bound charges on the dielectric surface,
as shown in Fig. 4. Note that in particle-in-cell codes once

where «i11/2, j is the dielectric constant at (i 1 1/2, j), Dx a charged particle crosses a boundary into a dielectric,
and Dy are grid spacings in the x and y directions, Dz is a its charge is simply added to the Q’s at the grid points
unit length in the z direction, and Qij is the total charge terminating the segment crossed by the particle. Hence in
at the grid point (i, j). In particle-in-cell codes, Qij is simply Fig. 4, particles p 1 1 and p 1 2 at time n contribute to
the sum of all charged particles weighted [11] to the grid Qij through the charge density rij (bilinear weighting [11]),
point (i, j). At a conducting boundary where Eq. (4) is used
to determine the normal electric flux, Qij can be written as

Qij 5 rijDVij 1 sijDAij , (5)

where DVij is the volume associated with the grid point
(i, j) where free charge exists, and DAij is the area of a
physical boundary at (i, j) where surface charge density
can accumulate. In Fig. 4, for example, because of the
physical structure, the amount of free space volume and
physical surface area associated with the grid (i, j) becomes

DVij 5
3
4

DxDyDz and DAij 5
Dz
2

(Dx 1 Dy).

At a conducting boundary Eqs. (4) and (5) are solved
for sij which is equivalent to the normal electric field. In
vacuum, «ij 5 «0 , sij 5 0, and DVij 5 DxDyDz. In electro-
static codes, the electric field is defined as E 5 2=f, or
in finite difference form

Exi21/2, j
5

fi21, j 2 fi, j

Dx
, Exi11/2, j

5
fi, j 2 fi11, j

Dx
,

FIG. 4. The Gaussian pillbox, centered at the (i, j) grid point in a
system with a uniform mesh. The cell centered at (i 2 1/2, j 1 1/2) is
inside a dielectric while all the other three cells around the grid pointEyi, j21/2

5
fi, j21 2 fi, j

Dy
, Eyi, j11/2

5
fi, j 2 fi, j11

Dy
,

(i, j) are vacuum. xn
p is the position of particle p at time n.
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FIG. 5. The Gaussian pillbox, at the (i, j) grid point, a dielectric vacuum boundary. The shaded region is a dielectric.

while particle p contributes to Qij through the surface Note that the electric field Exi, j
is not calculated at the wall,

but infinitesimally away from the wall which is why wecharge density rij (bilinear weighting [11]), while particle
p contributes to Qij through the surface charge density sij use the dielectric constant «i11/2, j instead of «i, j . The x

component of the electric field on the West facing dielectric(linear weighting [11]).
After the Poisson equation is solved for the potential free-space boundary, as shown in Fig. 5(b), is calculated

usingusing Eq. (4), then we need to solve for the electric field
on the mesh points. As noted earlier, the electric field
inside a dielectric or in free-space is solved using

DyDz(«i11/2, jExi11/2, j
2 «i21/2, jEx

i, j

)

Exi, j
5

fi21, j 2 fi11, j

2Dx
and Eyi, j

5
fi, j21 2 fi, j11

2Dy
. (6)

1
Dx
2

Dz(«i11/2, j11/2Eyi, j11/2
2 «i11/2, j21/2Eyi, j21/2

) 5 Qij ,

The fields on the dielectric free-space boundaries, shown
in Figs. 5 and 6, are solved using half-size Gaussian pill to be
boxes. The x component of the electric field on the East
facing dielectric free-space boundary, as shown in Fig. 5(a),
is calculated using

2«i21/2, jExi, j
5

Qij

DyDz
1 «i11/2, j Sfi11, j 2 fi, j

Dx D1
Dx
2Dy (8)

DyDz(«i11/2, j Exi, j
2 «i21/2, jExi21/2, j

)

F«i11/2, j11/2 Sfi, j11 2 fi, j

Dy D2 «i11/2, j21/2 Sfi, j 2 fi, j

Dy DG .
1

Dx
2

Dz(«i21/2, j11/2Eyi, j11/2
2 «i21/2, j21/2Eyi, j21/2

) 5 Qij ,

The y component of the electric field on the North facingto be
dielectric free-space boundary, as shown in Fig. 6(a), is
calculated using

«i11/2, jExi, j
5

Qij

DyDz
1 «i21/2, j Sfi21, j 2 fi, j

Dx D1
Dx
2Dy

DxDz(«i, j11/2Eyi, j
2 «i, j21/2Eyi, j21/2

)F«i21/2, j11/2 Sfi, j11 2 fi, j

Dy D2 «i21/2, j21/2 Sfi, j 2 fi, j21

Dy DG .
1

Dy
2

Dz(«i11/2, j21/2Exi11/2, j
2 «i21/2, j21/2Exi21/2, j

) 5 Qij ,(7)
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FIG. 6. The Gaussian pillbox, at the (i, j) grid point, a dielectric vacuum boundary. The shaded region is a dielectric.

to be condition, «1E1 2 «2E2 5 ss as D R 0, where ss is the
surface charge density.

«i, j11/2Eyi, j
5

Qij

DxDz
1 «i, j21/2 Sfi, j21 2 f

i, j

Dy D1
Dy

2Dx B. Internal Conductors

Our system may also include stair step internal conduc-
tors with known DC or time-varying Dirichlet boundaryF«i11/2, j21/2 Sfi11, j 2 fi, j

Dx D2 «i21/2, j21/2 Sfi, j 2 fi21, j

Dx DG .
conditions. Unlike the internal dielectric structures, the

(9) internal Dirichlet boundary conditions sporadically place
known potentials among the unknown potentials in the

Finally, the y component of the electric field on the South system which affects our field solver. However, we use the
facing dielectric free-space boundary, as shown in Fig. 6(b), same dynamic ADI field solver with binary masks of 0 or
is calculated using 1 at every grid point for known and unknown potentials.

Introducing the binary masks changes some of the coeffi-
cients in the matrix solver, but does not increase the com-

DxDz(«i, j11/2Eyi, j11/2
2 «i, j21/2Eyi, j

) 1
Dy
2

Dz putational cost of the dynamic ADI field solver. Once the
potential is obtained, we use Eq. (4) to calculate the normal

(«i11/2, j21/2Exi11/2, j
2 «i21/2, j21/2Exi21/2, j

) 5 Qij , electric field on the conductor vacuum (or conductor di-
electric) boundaries.

In order to simplify our discussion and equations in thisto be
section and the following sections, we assume that the
space immediately surrounding a perfect conductor has
the same dielectic constant (i.e., one cell around the con-2«i, j21/2Eyi, j

5
Qij

DxDz
1 «i, j11/2 Sfi, j11 2 fi, j

Dy D1
Dy

2Dx ductor «ij 5 «). Figure 7 shows the different boundary
surfaces which might arise in a stair step system. Note that
both components of the electric field are zero at pointsF«i11/2, j11/2 Sfi11, j 2 fi, j

Dx D2 «i21/2, j11/2 Sfi, j 2 fi21, j

Dx DG .
1–4 in Fig. 7 which implies that the surface charge density

(10) s is identically zero at points 1–4. For all the other points
in Fig. 7, either we have a well defined normal electric
field which is proportional to the surface charge density,At the inside or outside corner of a dielectric structure

no normal can be defined, hence we use Eq. (6) to obtain or we define a normal. For example, the normal to the
conductor at point 8 in Fig. 7 is in the x-direction, in whichthe electric field components at the corners. Note that

Eqs. (7)–(10) reduce to the electrostatic boundary jump case Eqs. (4) and (5) become
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sij

«
5 2

1
2«

Dyrij 1 Sfij 2 fi, j21

Dy D (16)

1
2

(Dx 1 Dy)
sij

«
5 2

3
4«

DxDyrij 1 Dy Sfij 2 fi21, j

Dx D
1 Dx Sfij 2 fi, j21

Dy D (17)

sij

«
5 2

1
2«

Dxrij 1 Sfij 2 fi21, j

Dx D . (18)

Equations (11)–(18) are now used at grid points 5–12,
respectively, as shown in Fig. 7, on the boundaries and
also (as will be shown later) at internal grid points on
structures. The electric fields normal to the surface at the
grid points 6, 8, 10, and 12 in Fig. 7 are proportional to
the charge density sij at those grid points and equal to
the right hand expression of Eqs. (12), (14), (16), (18).
However, strictly speaking, at the grid points 5, 7, 9, and
11, in Fig. 7, the electric field is undefined because one can
not define a normal to the surface at those grid points. ForFIG. 7. The shaded region is a perfect conductor bounded by 8

grid points. those points, we assume that the magnitude of the electric
field is proportional to sij , while the direction can be ap-
proximated by the difference of electric potentials at the
adjacent grid points. For example, at grid point 7, we use«i11/2, jExi11/2, j

DyDz 5 rij
Dx
2

Dydz 1 sijDzDy

Exij
5

sij

«
S Ex

ÏE 2
x 1 E 2

y
D , and Eyij

5
sij

«
S Ey

ÏE 2
x 1 E 2

y
D ,because the fields along and inside a perfect conductor are

zero. The above equation is solved for sij and along with
Exij

/« gives the normal electric field at point 8, the surface where sij is obtained from Eq. (13), while Ex and Ey are
of a perfect conductor. Rewriting Eq. (4) at each of the given by
grid points 5–12 in Fig. 7 along with the appropriate as-
sumptions about zero fields inside a perfect conductor pro-
duces Ex 5

fij 2 fi11, j

Dx
, and Ey 5

fij 2 fi, j11

Dy
.

IV. COUPLING TO A SIMPLE EXTERNAL CIRCUIT
1
2

(Dx 1 Dy)
sij

«
5 2

3
4«

DxDyrij 1 Dy Sfij 2 fi21, j

Dx D
WITHOUT DECOMPOSITION

1 Dx Sfij 2 fi, j11

Dy D (11) In this section we discuss the addition of external lumped
circuit elements to the field solver through a boundarysij

«
5 2

1
2«

Dyrij 1 Sfij 2 fi, j11

Dy D (12) condition for a perfectly conducting wall. The boundary
of the model is shown in Fig. 8. We assume that the top
and bottom boundaries at j 5 0 and J 5 Ny are continuous1

2
(Dx 1 Dy)

sij

«
5 2

3
4«

DxDyrij 1 Dy Sfij 2 fi11, j

Dx D
perfectly conducting boundaries, while the side boundaries
at x 5 0 and x 5 Nx are divided into five segments as

1 Dx Sfij 2 fi, j11

Dy D (13) shown in Fig. 8. The first and last segments (i.e., 0 , j ,
N1 and N4 , j , Ny ) are assumed to be grounded perfect
conductors, while the segment N2 , j , N3 is assumed to

sij

«
5 2

1
2«

Dxrij 1 Sfij 2 fi11, j

Dx D (14)
be a perfect conductor attached to an external circuit. The
potential along the segments N1 , j , N2 and N3 , j ,1

2
(Dx 1 Dy)

sij

«
5 2

3
4«

Dx Dyrij 1 Dy Sfij 2 fi11, j

Dx D N4 is assumed to drop linearly along y which is a reasonable
assumption if a dielectric spacer separates the driven elec-
trode from the grounded walls. Here we assume that the1 Dx Sfij 2 fi, j21

Dy D (15)
spacer is a vacuum gap with the relative dielectric of 1
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electrode is assumed to be a perfect conductor (an equipo-
tential), we only have one unknown on the boundary, i.e.,

f0 j 5 f0 , N2 # j # N3 . (20)

Applying Eqs. (13)–(15) to the left hand side we obtain

s0 j 5
2«Dy

Dx(Dx 1 Dy)
(f0 j 2 f1 j )

1
2«Dx

Dy(Dx 1 Dy)
(f0 j 2 f0, j21) 2

3
2

DxDy
Dx 1 Dy

r0 j ,

j 5 N2

s0 j 5
«

Dx
(f0 j 2 f1 j ) 2 r0 j

Dx
2

, N2 , j , N3

s0 j 5
2«Dy

Dx(Dx 1 Dy)
(f0 j 2 f1 j )

1
2«Dx

Dy(Dx 1 Dy)
(f0 j 2 f0, j11 ) 2

3
2

DxDy
Dx 1 Dy

r0 j ,

j 5 N3 .

We present the implementation of these equations for
the left hand side only, but it will become clear how one
may add similar equations for the right hand side. We may
now couple the boundary conditions in Eq. (21) at the
perfect conductor with the external circuit equations at the
left side.

Figure 9 shows a simple external circuit consisting of a

FIG. 8. The two-dimensional system is shown with a uniform mesh.
We assume that the boundaries at j 5 0 and j 5 Ny are assumed to be
continuous perfectly conducting boundaries while the boundaries at x 5

0 and x 5 Nx are divided into five segments. The first and last segments
(i.e., 0 , j , N1 and N4 , j , Ny ) are assumed to be grounded perfect
conductors, while the segment N2 , j , N3 is assumed to be a perfect
conductor attached to an external circuit. The potential along the seg-
ments N1 , j , N2 and N3 , j , N4 is assumed to vary linearly which
is a reasonable assumption if a spacer separates the driven electrode
from the grounded walls.

and no space charge. The linear drop assumption in the
gap gives

f0,N221 5
g 2 1

g
f0,N2

5
g 2 1

g
f0 and f0,N311 5

g 2 1
g

f0 ,

(19)

FIG. 9. The two-dimensional system to be simulated. All the bound-
where g is the number of cells in the gap and is assumed to aries are grounded except for part of the left boundary, which is the
be at least one because the grounded and driven electrodes driven electrode. The external circuit consists of a voltage source and a

blocking capacitor which stops the flow of average (DC) current.should not touch each other. Note that since the driven
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voltage source in series with a capacitor coupled to the where N 5 N3 2 N2 1 1, and all the f and r terms are
obtained at time t. Equations (25) and (26) can be com-left electrode. The voltage drop Vc across the capacitor in

the external circuit is given by the Kirchhoff ’s voltage bined and solved for ft
0 to produce

loop law,

Vc 5 V(t) 2 f0 , (22)
ft

0 5

s t21
T 1 (1/A)(CV(t) 2 Qt21

c 1 Qt
conv)

1 a 1 bft
1N2

1 cft
1N3

1 («/Dx) oN3
N2

ft
1 j

d 1 C/A
, (27)

where the signs are consistent with the voltage polarities
shown in Fig. 9. V(t) is the applied voltage source, and f0 whereis the potential on the conductor, as defined in Eq. (20).
The time variation of sT , the total charge density on the
driven electrode, may be obtained from the Kirchhoff ’s a 5

Dx
2 ON3

N2

r0 j 2
Dx(Dx 2 2Dy)

2(Dx 1 Dy)
(r0N2

1 r0N3
),

current loop law,

A
dsT

dt
5 I(t) 1 AJconv , (23) b 5 c 5

«

Dx
Dy 2 Dx
Dy 1 Dx

,

where I(t) is the external circuit current, shown in Fig. 9, and
A is the area of the electrode, and Jconv is the convective
(conduction) current density arriving at the driven elec-

d 5
«

Dx FN 1 2
Dy 2 Dx
Dy 1 Dx

1
4(Dx)2

gDy(Dx 1 Dy)G .trode due to plasma charged particles. The discrete finite
differenced form of Eq. (23) can be expressed as

After the potential f0 on the electrode is obtained from
A(s t

T 2 s t21
T ) 5 Qt

c 2 Qt21
c 1 Qt

conv , (24) Eq. (27), the total charge density sT can be calculated
from Eq. (26), and the external circuit parameters can be
computed aswhere e dtI 5 Qc 5 CVc is the charge on the capacitor

and Qt
conv is the charge deposited on the electrode from

the plasma during the time interval (t 2 1, t). Combining Qt
c 5 A(s t

T 2 s t21
T ) 1 Qt21

c 2 Qt
conv (28)

Eqs. (22) and (24) we find

and

s t
T 5 s t21

T 1
1
A

(CV(t) 2 Cft
0 2 Qt21

c 1 Qt
conv). (25)

I(t) 5
Qt

c 2 Qt21
c

Dt
. (29)

The total charge density sT may be expressed by
Note that Eq. (27) is the boundary condition for the

Poisson equation. However, because the right hand side
s t

T 5 ON3

j5N2

s t
0 j , of Eq. (27) also contains f1 j terms, we must iterate the

Poisson equation and the boundary conditions for both to
come to equilibrium. This iterative process may be compu-

where s0 j is defined in Eq. (21) at each grid point j on the tationally expensive and we recommend the use of super-
driven electrode. Summing over all the equations in Eq. position of Laplace and Poisson solutions to solve directly
(21) we obtain for the potential on the boundary.

V. COUPLING TO A SIMPLE EXTERNAL CIRCUIT
s t

T 5
«

Dx SN 1 2
Dy 2 Dx

Dy 1 Dx1
1

4(Dx)2

gDy(Dx 1 Dy)D ft
0 WITH DECOMPOSITION

An alternate approach to Section IV is to apply superpo-
2

«

Dx FO
N3

N2

ft
1 1

Dy 2 Dx
Dy 1 Dx

(ft
1N3

1 ft
1N2

)G (26) sition and decompose the field solver into the Poisson
equation with zero boundary condition and the Laplace
equation with the external circuit and other boundary con-
ditions. Note that the decomposition scheme described2

Dx
2 ON3

N2

r0 j 1
Dx(Dx 2 2Dy)

2(Dx 1 Dy)
(r0N3

1 r0N2
),

here is not an approximation. Using this superposition we
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will derive an equation exactly equivalent to Eq. (27) but
computationally more efficient. The Poisson equation,
=2fP 5 2r/« with zero boundary conditions is still solved

ft
0 5

s t21
T 1 (1/A)(I(t)Dt 1 Qt

conv) 1

a 1 bft
P1N2

1 cft
P1N3

1 («/Dx) oN3
N2

ft
P1 j

d 2 bft
NL1N2

2 cft
NL1N3

2 («/Dx) oN3
N2

ft
NL1 j

,every time step to account for the space charge effects.
Fortunately, the Laplace equation =2fNL 5 0 need only

(33)be solved once to account for the vacuum field effects.
Given the length of the driven equipotential electrode,

where a, b, c, and d are defined below Eq. (27).we solve the Laplace equation with f 5 1 on the driven
Note that the right hand sides of Eqs. (31) and (33) areelectrode to obtain the boundary effects and the potential

known at time t and no iteration is needed.profile throughout the system. The potential in the system
is then

B. General Circuit

The two examples worked out here were for a simpleft
ij 5 ft

Pij
1 ft

0fNLij
, (30)

current source and a simple voltage source external cir-
cuits. Verboncoeur et al. [9] showed how more general

where fNLij
5 ft

Lij
/ft

0 is the time-independent (one volt) expressions may be finite differenced and coupled as
potential profile obtained from solving the Normalized boundary conditions to a internal field solver. In our
Laplace equation. The potential profiles ft

Pij
and fNLij

are scheme, we can replace Eqs. (22) and (23) with expressions
known at time t without having ft

0 . The potential ft
0 on for more general circuits or simply incorporate Verbon-

the driven electrode can now be obtained through the coeur’s general circuit expression for Eq. (22). We can also
decomposition without any iterations. We solve the Pois- use Thomas’ more general approach [10] of coupling to
son equation at time t with zero boundary conditions to SPICE for including lumped circuit elements in the exter-
obtain ft

Pij
. Then using Eq. (30) we obtain nal circuit.

So far we have discussed the left boundary condition
only. It is clear that if both left and right (or other) bound-

ft
1 j 5 ft

P1 j
1 ft

0fNL1 j
,

ary conditions are applied, one may decompose the field
solve into two (or more) Laplace equations and a Poisson
equation. If other internal boundary conditions are alsofor N2 # j # N3 . Substituting the above form of ft

1 j into
applied, then in general the same decomposition can beEq. (27) and solving for ft

0 produces
carried out.

Our discussion above was mainly focused on driven and
grounded electrodes and external boundaries (Dirichlet
boundary condition). Internal dielectrics may float to a
self-consistent potential. However, if we need to imposeft

0 5

s t21
T 1 (1/A)(CV(t) 2 Qt21

c 1 Qt
conv) 1

a 1 bft
P1N2

1 cft
P1N3

1 («/Dx) oN3
N2

ft
P1 j

d 1 C/A 2 bft
NL1N2

2 cft
NL1N3

2 («/Dx) oN3
N2

ft
NL1 j

,
floating boundary conditions on the external boundaries,
then we need to apply a Neumann boundary condition to(31)
that boundary. If both Neumann and Dirichlet boundary
conditions are applied to the system, the same boundarywhere a, b, c, and d are defined below Eq. (27). Once the
conditions must be used on each surface for the Poissonpotential ft

0 on the electrode is known, the external circuit
equation as well as for the Laplace equations. For example,parameters can be calculated from Eqs. (28) and (29).
in the case of a plasma in a bounded box with voltage
or current sources applied to biased electrodes, all the

VI. OTHER TYPES OF EXTERNAL CIRCUITS boundary conditions may be expressed as Dirichlet type,
which makes the decomposition very simple. However, ifA. Current Source
one were to model a semi-infinite plasma over a biased

If the external circuit is a simple current source, then electrode, Dirichlet boundary conditions would be applied
Eq. (23) can be finite differenced as on three sides and a Neumann boundary condition on the

remaining boundary in order to represent a semi-infinite
plasma.

s t
T 5 s t21

T 1
1
A

(I(t)Dt 1 Qt
conv). (32)

VII. DECOMPOSITION IN AN IMPLICIT CODE

An implicit Poisson equation may be written to avoidUsing the superposition approach discussed in the previous
section, Eq. (31) may be rewritten as the gpeDt . 2.0 numerical instability constraint of explicit
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codes [11, 24–27]. Although implicit methods have accu- Because x and r̃ are pre-push quantities, the electric
field E t and hence ft

0 need not be known to calculate theracy constraints such as vteDt/Dx , 1 [27, 28], an order of
magnitude increase in Dt is possible for certain problems. coefficients a, b, c, and d in Eq. (35). Furthermore, if we

derive Qconv from pre-pushed particles that hit the elec-The implicit Poisson equation (ignoring internal dielec-
trics for simplicity) is given by trode, then ft

0 depends only on ft
1 j (N2 # j # N3). Hence

iteration may once again be avoided by superposition.
Using the same superposition as in Eq. (30), we can

= ? [(1 1 x(x, y))=f] 5 2r̃. (34) decompose Eq. (34), which is linear in f, into an implicit
Poisson equation = ? [(1 1 x(x, y))=fP ] 5 2r̃ with zero
boundary conditions and an implicit Laplace equation = ?The numerical correction x is proportional to the pre-push
[(1 1 x(x, y))=fNL] 5 0 with fNL 5 1 on the given bound-charge density r̃ [11, 24–27]. x is a numerical factor that
ary as before. In the explicit scheme, the normalized La-is time dependent. If there are no external magnetic fields
place equation needed to be solved only once, and scaled(i.e., x is a scalar), then the elliptic solver described in
each time step. In the implicit scheme, however, becauseSection II applies to this equation. With slight modifica-
of the time-dependence of the x term, ft

NL must be solvedtions, the finite difference equations of Section III also
each time step. Thus, the penalty charged for superpositionapply.
is one additional Poisson solve, which is a lesser burdenWith the x term modifications to Eq. (4) and similar
than the several Poisson solves required for an iterativemodifications to equations in Section V, Eq. (27) becomes
f0 solution. Then using Eq. (30) we obtain

ft
0 5 ft

1 j 5 ft
P1 j

1 ft
0ft

NL1 j
,

for N2 # j # N3 , where ft
P1 j

and ft
NL1 j

can again be found
without knowing ft

0 . Substituting the above form of ft
1 j

s t21
T 1 (1/A)(CV(t) 2 Qt21

c 1 Qt
conv) 1 ã 1 b̃ft

1N2
1

c̃ft
1N3

1 («/Dx) oN3
N2

(1 1 (x0 j 1 x1 j )/2)) ft
1 j

d̃ 1 C/A
, into Eq. (35) produces

(35)
ft

0 5

where s t21
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c 1 Qt
conv) 1 ã 1 b̃ft
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1
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1 («/Dx) oN3
N2

(1 1 (x0 j 1 x1 j )/2)) ft
P1 j

d̃ 1 C/A 2 bft
NL1N2

2 cft
NL1N3

2

(«/Dx) oN3
N2

(1 1 (x0 j 1 x1 j )/2) ft
NL1 j

,
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Dx
2 ON3

N2

r̃0 j 2
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(36)
b̃ 5

«
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Dy 2 Dx
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2 G ,

where the coefficients ã, b̃, c̃, and d̃, are defined below
Eq. (35).c̃ 5

«

Dx
Dy 2 Dx
Dy 1 Dx F1 1

x0N3

2 G ,

VIII. DUALLY DRIVEN RF DISCHARGES

and The algorithm above has been implemented in the code
PDP2 [1, 19] and is used to model a dually excited capaci-
tively coupled RF system. The majority of conventional
RF plasma processing units are powered by 13.56 MHzd̃ 5

«

Dx FO
N3

N2

S1 1
x0 j 1 x1 j

2 D1
Dy 2 Dx
Dy 1 Dx RF generators. By treating the excitation frequency as one

of the process parameters, we may accomplish accurateS2 1
x0N2

1 x1N2

2
1

x0N3
1 x1N3

2 D and independent control of ion flux and ion bombarding
energy. This can be achieved by driving the source and

1
2(Dx)2

gDy(Dx 1 Dy)
target electrodes with separate power sources. Goto et al.
[29] investigated the influence of the excitation frequency
in a parallel cathode-coupling dually excited system, andS2 1

x0N2
1 x0N221

2
1

x0N3
1 x0N311

2 DG .
found that the self-bias voltage of the cathode became
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FIG. 10. Schematic of the dually excited capacitively coupled RF system. The right (source) electrode was biased at 200 V and 30 MHz, while
the left (substrate) electrode was biased at 100 V at various frequencies between 1 and 13.56 MHz. All the other boundaries were grounded.

FIG. 11. Time-averaged potential in an argon plasma at p 5 10 mTorr. The source electrode was biased at 200 V and 30 MHz, and the substrate
electrode was biased at 100 V and 6.78 MHz.
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FIG. 12. Time-averaged ion density in an argon plasma at p 5 10 mTorr. The source electrode was biased at 200 V and 30 MHz, and the
substrate electrode was biased at 100 V and 6.78 MHz.

a logarithmic function of the excitation frequency. In a We used PDP2 [1, 19] to simulate a dually excited RF
discharge as shown in Fig. 10. A sinusoidal voltage sourceprevious study [1], we used PDP2 to investigate the fre-
of 200 V amplitude and at 30 MHz was applied to the rightquency scalings of various discharge parameters including
(source) electrode, while a similar voltage source of 100plasma density n, discharge power P, and the driven sheath
V was applied to the left (substrate) electrode at variouswidth sD . At a constant bias voltage, the scalings were
frequencies between 1 and 13.56 MHz. All the otherfound to be roughly
boundaries were grounded. Simulations were made in an
argon plasma at the gas pressure of 10 mTorr. Figure 11P Y n Y g2

0 , (37)
shows the time-averaged potential profile in the system at
the gas pressure of p 5 10 mTorr. For the case shown inand
Fig. 11, the substrate was biased at 100 V and 6.78 MHz.
Figure 11 shows self-biases of 245 and 2122 V at the
substrate and source electrodes, respectively, and a plasmasD Y

1
g0

. (38)
potential of 48 V. Note that the time-averaged RF sheath
is fully resolved. Figure 12 shows the time-averaged ion

These scalings suggest that an independent control of density in the system under the same conditions. The ion
plasma production and ion bombarding energy may be density is seen to peak at 6 3 109 cm23. The noise in the
achieved by exciting the source electrode at frequencies ion density is due to the limited number of particles used
higher than 13.56 MHz to achieve higher densities, while in the simulation. The noise in Fig. 12 is especially promi-
the substrate electrode is biased at frequencies lower than nent in the sheath where the particle density is very low.
13.56 MHz to obtain the desired bias voltage and hence Figure 13 shows the substrate frequency dependence of

ion density and power into the system from the substrateion bombarding energy.
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generating a high density plasma reactor with separate
control over ion flux and ion bombarding energy. For the
purposes of our simulations and in order to bring cases to
steady state, we applied relatively low powers which re-
sulted in lower densities than this type of source is capable
of generating. Goto’s measurements [29] showed that the
plasma density in these discharges can reach mid to high
1010 cm23.

IX. CONCLUSION

We have developed an algorithm which couples external
lumped circuit elements to bounded two-dimensional
plasma simulation codes. This scheme allows decomposi-
tion of the field solve into a Laplace solver with boundary
conditions (e.g., applied potentials) and a Poisson solver
with zero boundary conditions. We presented the details
of using this algorithm in both explicit and implicit codes.
An explicit version of this scheme is implemented in a two-

FIG. 13. The substrate frequency dependence of ion density and
power into the system from the substrate and source generators at con-
stant RF voltages.

and source generators at constant RF voltages. As the
substrate frequency is increased from 0 to 13.56, the sub-
strate power increases but stays substantially below the
source power. The source power slightly decreases as the
substrate frequency is raised, but stays relatively insensitive
to that frequency. Hence most of the power deposited into
the electrons (which results in plasma production) comes
from the source electrode and is almost insensitive to the
substrate frequency. As the result, the ion density shown
in Fig. 13 stays relatively constant as the substrate fre-
quency is changed.

Figure 14 shows the substrate frequency dependence of
source and substrate self-biases and the average ion energy
arriving at the substrate at constant RF voltages. The sub-
strate self-bias and the average ion energy arriving at the
substrate both increase as the substrate frequency is de-
creased which is consistent with Goto’s measurements [29]. FIG. 14. The substrate frequency dependence of source and substrate
Based on the data in Figs. 13 and 14 and in Goto’s measure- self-biases and the average ion energy arriving at the substrate at constant

RF voltages.ments, it is clear that this plasma system is capable of
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